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Unsteady heat transfer for fully developed laminar flow with a parabolic velocity profile 
through a parallel-plate channel, subjected to sinusoidally varying inlet temperature is 
considered. A boundary condition which accounts for the effects of both external convec- 
tion and wall thermal capacitance is considered. In this work, we develop a new approxi- 
mate solution to this periodic Graetz problem, using a second-order Galerkin method. The 
present model neglect,,; axial heat conduction along the wall but takes into account the 
transverse temperature gradient in the wall. The effects of transverse heat conduction in 
the wall and fluid-to-solid heat capacitance ratio on the behavior of the periodic responses 
are investigated. Comparisons are made with a finite difference solution. © 1997 by 
Elsevier Science Inc. 
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I n t r o d u c t i o n  

Studies of sensible heat storage systems and regenerators require 
the dynamic response of an exchanger where the inlet tempera- 
ture varies in time. The simplest, most expedient approach to this 
problem is the standard quasi-steady method which employs a 
constant surface heat transfer coefficient. Kardas (1966) investi- 
gated the heat transfer to flow in parallel-plate channels sub- 
jected to an inlet temperature varying with time. He presented 
an analytical solution of l~he unidirectional regenerator problem. 
He employed a quasi-steady model and Laplace transforms. 
Sparrow and De Farias (1968) investigated the transient laminar 
forced convection in a parallel-plate channel where the wall 
temperature was dynamically determined by a balance of the 
heat transfer rate and the energy storage. They also assumed 
that slug flow and the flui[d inlet temperature varied sinusoidally. 
Kaka~ and Yener (1973) obtained the exact solution to the 
transient energy equation for laminar slug flow in parallel plate 
channel with a sinusoidal variation of inlet temperature. They 
presented experimental results to predict the lowest eigenvalue 
for turbulent flow. Originally, Kaka~ (1975) was the first to 
obtain an analytical solution, but only in the case of a constant 
wall temperature. Cotta et al. (1987) utilised the solution 
methodology suggested by Cotta and Ozisik (1986) to solve the 
conjugate laminar forced convection in parallel-plate ducts and 
circular tubes for slug flow with periodically varying inlet temper- 
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ature. Guedes and Cotta (1991) examined the effects of axial 
conduction in the wall for laminar flow inside ducts, but the 
effects of transverse temperature gradients in the solid were 
neglected. The inlet temperature was assumed to vary periodi- 
cally in time. Later, Guedes et al. (1994) extended their previous 
study to turbulent flow. Kaka(j and Li (1994) compared the 
experimental results with theoretical studies under a general 
boundary condition which considered the external convection 
and the wall thermal capacitance. Recently, Mansouri and 
Fourcher (1995) analyzed the periodic forced convection with 
parabolic velocity profile in a parallel-plate channel. A second- 
order accurate explicit finite difference scheme was used in the 
numerical solution. The effects of the wall thickness and Biot 
number were investigated. 

In this work, we developed a new approximate solution to 
solve laminar forced convection in parallel-plate ducts subjected 
to periodic variations of inlet temperature over time. We consid- 
ered both parabolic flow and coupling with the walls. We begin 
by assuming a periodic solution relative to time and eliminate the 
axial dependance by Laplace transforms. Then the remaining 
fluid energy equation is solved by a second-order Galerkin 
method. Transverse conduction is allowed in the solid plate. To 
verify the pertinence of the proposed Galerkin method, we also 
solved this problem by using the technic of the numerical finite 
difference. The latter is validated by comparing with the exact 
analytical solution based on the hypothesis of the slug flow 
situation. The results are compared with the values given by Li 
and Kaka~ (1991). They utilised a variation of the generalized 
integral transform technique, thus avoiding the complex eigen- 
value problem and solving instead a coupled system of complex 
ordinary differential equations. The present methodology is pre- 
sented to solve conjugate laminar forced convection inside the 
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channel of a thick-walled heat exchanger and to evaluate its 
unsteady performance. 

Formulat ion of the problem ~- 

We consider laminar forced convection inside parallel-plate 
channels subjected to periodic time variation in the inlet temper- 
ature. The geometry for the theoretical analysis is shown in 
Figure 1. Viscous dissipation and free convection are not taken 
into consideration, and physical properties are assumed to be 
constant. The duct wall external surface is subjected to convec- 
tion with an environment at constant temperature T=, and heat 
conduction across the duct walls is taken into account. Axial 
conduction in the fluid is neglected. The effect of axial conduc- 
tion in the fluid is indeed significant if Peclet number is less than 
-- 100 (Hsu 1968; Lin and Kuo 1988; Michelson and Villadsen 
1974). The energy equation governing the diffusion in the z-axis 
and the convection in the x-axis can be written in a dimension- 
less form as: 

Fluid region: 

027"/0z + 2 = U + (z + )aT"lax + + i~" for 0 < z + <  1, x+>0  

(la) 

= 1 a t  x + = 0 ( l b )  

OI"/Oz + = 0 at z + = O, for x + > 0 (lc) 

h, 7"= 

, : t ,  

Figure I The geometry of the theoretical analysis 

Solid region: 

OZO/Oy +2 = 2i13~§ for 0 <y+ < 1, x + > 0 (2a) 

O0/Oy+=BiO for y+=O,x+>O (2b) 

Solid-fluid interface: 

{ T=O at y + = z + = l f o r x + > O  (2c) 

r O0/ay + = - OT"/Oz + 

where the following dimensionless groups have been utilised: 
x+=4x / l 'Pe ;  y+=y / l ;  z + = z / l ' ;  13~=1 ~ / ~ ] ~ ;  B i - - h l / k  s 

= 21'2~r/xe~f; r = l ' ks / lh f ;  T + = ( T -  T®)/To; 0 + = (0 - 

N o t a t i o n  mean velocity 
x, y, z spatial coordinates 

[ A] N × N matrix, defined by Equation 1 l a and b 
a.k elements of coefficients matrix [A] 
a* fluid-to-wall thermal capacitance ration (= p f C f l ' /  Greek 

psCsl) 
A. complex coefficient, defined by Equation 15a ct 
[B] column vector of know values b. 13 s 
Bi Biot number (= h l / k  s) 
B-[ modified Biot number = rBi/(Bi + 1) 

8 
b. coefficient vector, defined by Equation l lc  0 
[(2] column vector of unknow values C. 0 + 
C s wall specific heat k 
C[ specific heat of the fluid at constant pressure 
D e equivalent diameter (= 41') 

P.n 
coefficient, defined by Equation 3c tr. 

h convection heat transfer coefficient outside the wall p 
i ~ "r 
I thickness of the wall q~ 
1' half distance between parallel plates × 
[M] square matrix for solving temperature field oJ 
[ P] column matrix of know values for solving temperature 

field 
p Laplace transform variable 
Pe Peclet number (= ~De/ct f)  b 
Q. complex coefficient, defined by Equation 15b c 
r (= l ' k s / l k  f )  f 
T fluid temperature N 
T + dimensionless fluid temperature = (T - T®)/T o s 
T o amplitude of inlet temperature 
T= ambient temperature 
t time variable 
u(z) flow velocity ~ 
U + Dimensionless flow velocity (= u(z)/Ft 

thermal diffusivity (= k/(pCp) 
(= t ~/~/~-~ ) 
dimensionless inlet frequency (= 21'2~r/xaf) 
relative deviation 
solid temperature 
dimensionless solid temperature = (0 - T=)/T o 
thermal conductivity 
dimensional decay index defined in Equation 18 
complex root of equation det[A] = 0 
complex eigenvalues of Equation 8 
density 
period (= 2~r/oD 
phase lag, Equation 17 
dimensionless temperature amplitude 
(= 2 Ir/~') 

Superscripts 

bulk quantity 
centerline value 
fluid properties 
number of terms in series 
solid properties 

Subscripts 

time transformation defined by Equation 2d 
Laplace transform with respect to the x + variable 
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T®)/To; U+=u(z)/~. Here, there is no need for an initial 
condition, because we are interested in the periodic solution of 
the problem. We seek a solution in the form: 

T + (x +, z +, t) = 7"(x +, z + )e i=t 

and (2d) 

0 + (x +, y+, t) = O(x +, y+)e i=  ̀

where i = fL"i-. 
The fully developed paral~lic velocity profile U+(z +) is 

U+(z +) = 3/2(1 - z+2). 

The solution to Equation 2a is 

--A sinh[13s(1 + i)y + ] 4-B cosh[13,(1 + i)y + ] (3a) 

When we substitute Equation 3a into Equation 2b and 2c, we 
obtain the following equation: 

0T(x +, 1)/0z + + / - ~ ( x  +, 1) = 0 (3b) 

where 

/ t  = r(Bi + ~stanh~)/(m + Bitanh~s/f3s); 113 s = (1 + i)f3 s (3c) 

Equation 3b is a boundary condition of the third kind with a 
complex exchange coefficient H, which includes the properties of 
the wall. If H tends to infinity, Equation 3b gives a constant wall 
temperature boundary condition; if H tends to zero, Equation 3b 
becomes an insulated boundary condition. Using the expression 
for 0, Equation 3a, the following equation can be obtained: 

0(y+ = 1) /0(y  += 0) = cosh~, + Bi sinh~s/~ ~ (4a) 

For smaller values of 13 s (tanh 13~ = 13~) and Bi -"*: 1, the effect of 
heat conduction in the wall can be neglected. The coefficient /-1 
becomes: 

D = rBi + i~/a* (4b) 

where a* = (pC)fl'/(pC)sl. 
The parameter a* represents the ratio of heat capacity of fluid to 
that of the wall. Li and I~,ka~ (1991) obtained for the convective 
boundary condition which, considers the effect of wall thermal 
capacitance the following expression: 

= [ r a i / ( B i  + 1)] + iS~a* (4c) 

For Bi << 1 (and [3 s << 1), Equation 4b and 4c are equivalent, 
otherwise for Bi > 1 (and 3 s << 1) Equation 3c becomes: 

D = [ r B i / ( B i  + 1)] + [iS/a*(Bi + 1)] (4d)  

Approximate  solution by Galerkin method 

If we define the Laplace transform of the complex temperature 
as 

the transform of Equations la, lc, and 3b, yields 

L[~]=dZ~/dz+2-  3 / 2 ( 1 - z + 2 ) ( p ~ -  l ) - i S ~ = O  (6a) 

dT /dz  ÷ = 0 at z + = 0 (6b) 

d ~ / d z  += - / - ~  at z += 1 (6c) 

To solve Equations 6, we employ the Galerkin method, where 
we approximate the solution by 

N 
~.(z +, p) = Y'~ C.(p) cos(~r.z +) (7) 

1 

where the function cosGr.z +) satisfies the boundary conditions 
6b and c. The eigenvalues or. are solutions of the transcendental 
equation 

tan~ = H (8) 

The unknown, complex coefficients C . (p )~ re  given by em- 
ploying orthogonality between the operator L[T] of Equation 6a 
and cos(or, z+): 

folL[~n(z+,p)]cos((rnz+)dz+=O for n = l  to N (9) 

Equation 9 can be expressed in matrix form as [AIC] = [B] 
where [A] is a square symmetric matrix with complex elements. 
The vector [C] is defined by 

[C(p)]  = {el (p) ,  C2(p) . . . . .  CN(p)} (10) 

and the elements (a.k) of the matrix [A] are given by 

ann=(~r 2 + i ~ )  1 +  2tr. tr ) 

( l l a )  

/ 7-~ - - ~ 2 1  COS~rnCOSffk ] a.k =ak. = - 6 p _ . _  --__ ( 2 H 2 + 2 B + c r 2 + o  "2) (11b) 
. . k  L t~; - ~ i  ) 

The vector [B] is defined by 

6 
b. = ~ ( s i n~  n - (r. c o s ~ . )  n = 1 ,2  . . . . .  N (11c)  

The Laplace transforms of the bulk temperature ~b(P) is 
defined by 

~'(z + , p) = f f f  exp( -px  + ) 2F(x+, z + ) dx + (5) ~b(P) =3/2f01(1 -z+2)~'(z+,P )dz+ (12) 
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then 

N 

To(P) = 1 /2  Y'.bnC,,(p) 
1 

After some algebraic manipulations we obtain 

N 

~o(P) = Y ' ~ Q . / ( P +  I~.) 
1 

(13) 

(14) 

Table 1 Comparison of decay index values (0  obtained 
from the Galerkin methods and numerical solution 
(Bi=0.O and 5=0.1)  

a* ~ (num.) ~ (anal.) ~, percent 

5. 10 -  s 1.88482 1.88398 0.045 
8.5 10 -3 1.85130 1.85138 0.004 
8.5 10 -  2 0.52042 0.52084 0.081 

0.1 0,42310 0.42130 0.425 

where IX, is a complex root of the characteristic Equation 
det[A] = 0 and Q, is a complex quantity. The inverse transform 
of Equations 7 and 14 may be written respectively as: 

N 
7"c(X+,O) = Y'~A. exp( - ix.x + ) 

1 

N 
Tb(x + ) = ~ .Qnexp(- I~nX + ) 

1 

(15a) 

(15b) 

For N = 2 it is possible to compute explicitly the constants 
A , ,  Q, ,  Ix, and obtain accurately the values of 7~(x+,0) and 
To(x+). It is convenient to define: 

Tc(x +, t) = ×c(X + ) sin[tot - ~c(x + )] (16a) 

Tb(x +, t) = ×b(x +) sin[tot - %(x  +)1 (16b) 

where 

Xc(X + ) = 17~c (x + )1 and %(x  + ) = - argT~c(X + ) (17a) 

×0(x + ) = ITb(x + )l and % ( x  + ) = - argT0(x + ) (17b) 

To compute the numerical results and the Galerkin methods, 
the dimensional decay index ~ is defined as: 

Xc(X +) =De -~x+ (18) 

Numerical values for the parameters a*, and B-~, and 5 followed 
those in Li and KakaE (1991). The effects of heat conduction in 
the wall and thermal capacitance on the temperature amplitudes 
and phase lags were then investigated, with particular emphasis 
on the transverse wall diffusion, because this aspect was not 
considered in previous works available. 

Figures 2 and 3 illustrate the effects of fluid-to-wall thermal 
capacitance ratio on the bulk temperature amplitudes and the 
phase lags along the duct for Bi = 8.5 10 -4 and 8.5 10 -3 corre- 
sponding, respectively, to l~-~= 10 and 100 at 5 = 0.1. It can be 
seen that for large values of wall thermal capacitance (small 
a* ~- 0.01), the storage of heat in the wall will substantially affect 
the dimensionless temperature amplitude along the duct, espe- 
cially for values of Biot number less than 8.5 10 -4 (see Figure 2). 
The effect will be more significant for the phase lags. From these 
two figures, it is clear that the differences among the tempera- 
ture amplitudes and the phase lags along the duct for different 
a* at small values of Bi( < 8.5 10 -4) are substantial, while those 
differences for large values of Bi (i.e., 8.5 10 -3) are very small; 
i.e., all the curves for different a* are very close to each other 
(see Figure 3). When Bi is relatively large, the heat transfer by 
external convection is predominant, and the effect of a* on the 
temperature amplitude along the duct is then small (for Bi = 8.5 
10-3). 

Figure 4 shows the amplitudes of the centerline temperature 
along the channel for different [3, by fixing a * =  8.5 10 .3  and 
5 = 0.1. This particular value of a* corresponding to the practical 

Va l id i ty  of  the  m e t h o d  

The solution of Equations 1 and 3b was found by application of a 
finite-difference method. We used a fourth-order scheme in the 
z-direction and third-order in the x-direction. The system written 
in finite differences leads to the matrix equation 

[M][T]  = [P]  (19) 

The complex Equation 19 has been numerically solved by using 
appropriate subroutines from IMSL library, 1987. The accuracy 
of the numerical scheme can be checked by using a slug flow 
velocity profile where an exact analytic solution has been devel- 
oped by Acker and Fourcher (1981). In Table 1, the numerical 
and analytical decay indexes, respectively l~(num) and I~(anal), 
have been listed and compared. The maximum relative deviation 
is less than 1% for different a*. Excellent agreement is found for 
parabolic flow between the numerical results and the Galerkin 
methods. 

Resul ts  and d iscussion 

Based on the preceding analysis, we now present some typical 
results for the dimensionless centerline and bulk temperature. 

Xb(X+ ) Amplitude ~ ,(X + )  

t - Phase Lag 50 

a* =5.ot0-1 .--~... :'::- 45 

o.s ~ \ \  , °* =as 1o-3--~ :'" 4o 
\ \  ..:.. 

* -2 -'" \ \  

0.4 =. .=: 20 ~: 

,, 

0.2 _ -"  • .,,,. ......... , =o:  . . . . . .  ,o 

tO g o o ~ °  ~ .  - - ° "  

o .'"'"::::'-: ........... ' ! i i 0 

o. 0.2 0.4 0.6 o.s t. t.2 t.4 

x + = 4 x l l "  Re Pr 
Figure 2 Amplitudes and phase lags of dimensionless bulk 
temperature along the duct for various values of fluid-to-wall 
thermal capacitance ratio (Bi=8.5 10-4;  8=0.1)  
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Tab le  2 The f i rs t  two  coef f i c ien ts  and e igenva lues  fo r  bu lk  t empe ra tu re  of cons ider ing  the  e f fec ts  of  wa l l  conduct ion;  
at B i = 0 . 0  and 6 = 0 . 1  

n O n ~n ~n a*  

1 0 . 9 0 9 4 2 E +  0 - -  5 .45678E  - 4i 0 .18840E  + 1 + 0 . 7 7 7 7 8 E  - l i  1 . 5 7 0 7 7 E +  0 +  8 .08840E  - 4i  
5. 10 - s  

2 6 .97397E  - 2-t- 1 .41805E - 4i  0 . 2 2 5 5 4 E +  2 + 0 . 1 1 0 0 6 E +  0i 4 .71231 E +  0 +  2 .42655E  - 3i 

1 0 . 9 1 6 0 8 E +  0 -- 2 . 7 1 1 5 0 E  - 2i 0 . 1 8 5 1 4 E +  1 + 0 .34697E  + 0i  1 . 5 5 9 2 2 E + 0 +  1 .33295E - l i  
8 .5 10 - 3  

2 6 .48534E  - 2 + 9 . 0 2 9 2 6 E  - 3i 0 . 2 1 9 9 9 E +  2 + 1 . 5 8 0 2 1 E +  0i 4 .66997E- I -  0 +  4 . 1 9 2 8 8 E  - l i  

1 1 . 0 1 4 7 8 E +  0 -  1 .95309E - 2i 0 . 5 2 1 1 3 E +  0 +  0 . 9 6 5 6 9 E + 0 i  8 .64887E  - 1 + 5 .85492E  - l i  
8 .5 1 0  - 2  

2 -- 1 .61903E - 2 +  1 .91835E - 2i 0 . 1 4 2 8 2 E +  2 +  3 . 9 1 1 6 8 E + 0 i  3 . 1 8 8 4 2 E + 0 +  3 .68781E  - l i  

1 1 . 0 1 2 9 2 E + 0 -  1 . 4 1 3 8 7 E -  2i 0 .42159E- I -  0 + 0 . 9 0 4 8 4 E + 0 i  0 . 8 0 0 5 0 E +  O +  5 . 6 9 8 8 0 E -  l i  
0.1 

2 - 1 .23032E - 2-t- 1 .40298E - 2i 0 . 1 4 1 0 8 E  + 2-F 3 . 3 6 1 2 6 E +  Oi 3 . 1 7 6 6 6 E +  0 +  3 .21920E  - l i  

1 1 .00003E + 0 -- 5 .14392E  - 7i 4 .09960E  - 4-1- 1 .09997E - l i  7 . 08401E  - 2 + 7 .05808E  - 2i 
10 

2 - 2 .80479E  - 5 +  5 .15163E  - 7i 0 . 1 3 3 5 1 E +  2 +  1 .92767E - l i  3 . 1 4 1 6 0 E + 0 +  3 .18311E  - 3i 

1 1.00001 E + 0 +  9 . 4 6 7 0 8 E  - 7i 2 .05260E  - 4 + 1 .00999E - 1 i 2 .23681E  - 2 +  2 .23432E  - 2i 
100  

2 - 1 .35821E - 5 - 9 .46806E  - 7i 0 . 1 3 3 5 1 E + 2 +  1 . 6 3 5 2 4 E -  l i  3 . 1 4 1 5 9 E + 0 +  3 .18310E  - 4i 

case (the fluid is a gas and the wall is a styrofoam) considered by 
Kaka~ and Li (1994). The curves for different 13 s represent the 
effects of the transverse temperature gradients in the solid. For 
decreasing 13~, which represents a decrease in the wall heat 
conduction, the amplitude decays faster along the channel. From 
Figure 4, the phase lags of the dimensionless centedine tempera- 
ture distributions are presented for the same numerical values of 
a* and ~. For decreasing values of I~, the delay becomes smaller 
(decreasing phase lags). It can be seen that for large values of 13~ 
(i.e., 5.0), the effects of the transverse temperature gradients in 
the wall are more pronounced. 

Based on the cases studied here, the phase lag varies linearly 
with the dimensionless axial distance x ÷ along the channel. 
Generally, for regions sufficiently away from the inlet, only the 
principal mode (1~ 1) of the exponential series is dominant. There- 
fore, the temperature amplitude decays exponentially along the 
distance from the inlet except at the locations very close to the 
inlet. The important results of the theoretical analysis are also 
given in tabular form. In Table 2, the first two coefficients Q, 
and eigenvalues (p., and (r,) are listed for different a* and 
Bi = 0. These values can be used in Equations 15a and b to 
calculate numerical values of centerline and bulk temperature 
respectively. 

Xb (x+) Amplitude ~b ( x+) 
1 Phase Lag io 

a* =5.0 ]0 -5 ----~.  "::". 

* 3 """•  "'• o.s • = 8 . s , 0 -  s . .  

\ \  ..., * "-2 ° • ~ 

q~ X X  o.°° #R ooo 
= .,;...,R i ;  ,'~'~ 

"< 0,4 4 = =  • o.~'° 

=01 
eo  ° °  

a" = 5.0 10 - 5 " ' ~ ' * ' ' "  2 0,2 "';~ "'" ~ 

0 , 0 

o. 0.2 0.4 0.6 o.s i. l a  t.4 

x + = 4x I 1" Re Pr 

Figure 3 Amp l i t udes  and phase lags of  d imens ion less  bulk 
t e m p e r a t u r e  a long the  duct  fo r  va r ious  va lues  of  f l u i d - to -wa l l  
t he rma l  capac i tance ra t io  ( B i = 8 . 5  1 0 - 3 ;  8 = 0 . 1 )  

~ ( x  +) Ampfitude ~c(X+) 

,.°" 3J 

~s =5"0  e . , "  ~ , -  0,8 ~ ' -  ~ ~,, .. ~'V .., 30 
\ \  ~ ." ~ . ' "  ,- / 

, × \ . . . "  . . - - : . - : : .  L,., 
o., , ,  ,.o_ I 

• --- , , .  = 

o., L, ,  

• * . ~ . .  I0  

0 = "* ~ i , = | 0  

o. o.2 0.4 o.6 o.s l. 1.2 L4 
x + = 4 x l l "  Re Pr 

Figure 4 Amp l i t udes  and phase lags of  d imens ion less  tem-  
pera tu re  a long the  cen te r l i ne  of  the duct  fo r  d i f f e ren t  va lues  
of  13 s ( a * = 8 . 5  10 - 3  , ~ = 0 . 1  and B i = 0 . 0 )  
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Space limitations preclude the complete tabulation for all 
cases considered here. Table 3 shows the comparison between 
the eigenvalues and coefficients, as calculated by solving the 
present model, and those calculated from the generalized inte- 
gral transform technique by Li and Kaka~ (1991). The discrep- 
ancy between the two methods is estimated at 6% for the 
principal mode ix r 

Concluding remarks 

The present model using a Galerkin method succeeds in predict- 
ing the temperature distribution inside a parallel-plate channel 
with periodically varying inlet temperature and convective 
boundary conditions, including the effects of transverse diffusion 
in the wall. The numerical scheme results and Galerkin method 
analyses are in excellent agreement. The results obtained in the 
present study can be briefly summarized as follows: 
(1) For regions sufficiently away from the inlet only the first 

term of the series is necessary. Therefore, the fluid tempera- 
ture amplitude decays exponentially with distance along the 
duct and the phase lag varies linearly. 

(2) The effects of the heat capacitance ratio a* are more pro- 
nounced at small Bim number. 

(3) At a fixed frequency 8 = 0.1 considered here, the effects of 
the wall transverse conduction are more pronounced at large 
values of 13 s. 

(4) The present method is compared with the Li and Kaka~ 
(1991) solution for the same boundary condition at the inter- 
face. The discrepancy is about 6% for the principal mode P~l. 
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